

Thermal Design of a Through Hole Substrate for the Heat Dissipation of the LEDs

<u>1. Objective</u>

To design LED products, it is essential to take thermal expansion into account.

The operating temperature of the LEDs is determined by the junction temperature (T_J). When the junction temperature exceeds the maximum value specified for each model, the luminous flux is significantly decreased, resulting in catastrophic failures such as no light emission due to wire breakage. Therefore, it is necessary to use LED products so that the junction temperature (T_J) does not exceed the maximum value.

The optimal T_J will enable LED products to have a long life.

It is required, therefore, to achieve the optimal thermal design for LED products.

In this application note, Nichia will recommend the design of Through Holes as a method of heat dissipation by verifying prototypes.

2. Thermal Path in an LED

Figure 1 shows the thermal path in an LED. The heat generated from the chip is transferred through the die bonding resin, electrode, solder, board, and finally to the external environment.

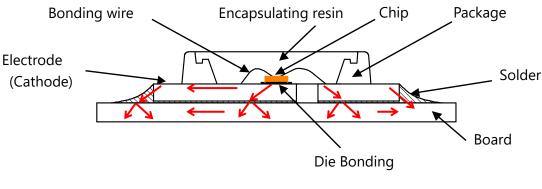
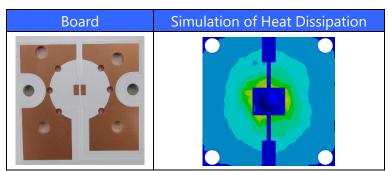



Figure 1. Cross Section of LED and Thermal Path

3. Heat Transfer to Board

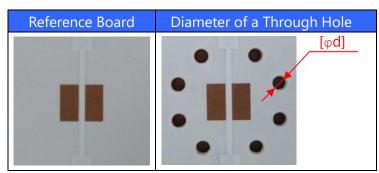
Table 1 shows the simulation of heat dissipation from the chip to the board. The heat generated from the chip is transferred to the board in a concentric circle pattern.

Table 1. Simulation of Heat Dissipation

This document contains tentative information, Nichia may change the contents without notice.

4. Design of Through Holes

For the optimal design of Through Holes, we experimented with prototypes by changing the verifying items below:


Verification Item

- 1) Diameter of a Through Hole
- 2) The number of Through Holes
- 3) The diameter of a set of Through Holes
- Note: We used a two-layer FR4 (Layer thickness: 1.6 mm, Copper plating thickness: 35 µm) for the prototypes. On the basis of the simulation of heat dissipation described in Section 3, we located the Through Holes in a circle around the LED prototype.

4.1 Setting of Diameter of a Through Hole

We evaluated the heat dissipation by changing the diameter of a Through Hole. (We used the same conditions in the number of Through Holes and the diameter of a set of Through Holes.)

Table 2. Verification Item: Diameter of a Through Hole

The heat dissipation in each condition is evaluated by the ratio of T_J , regarding the T_J of the reference board without any Through Hole as 1. Please refer to Figure 2 for the evaluation results of the heat dissipation depending on the diameter of a Through Hole.

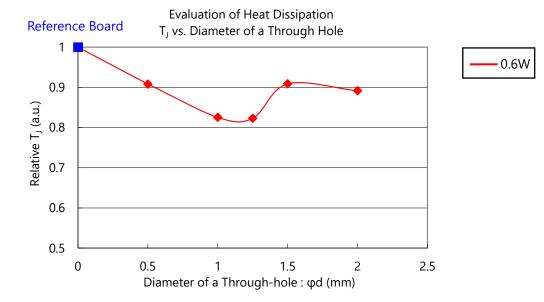


Figure 2. Evaluation Result of Heat Dissipation Depending on Diameter of a Through Hole

This document contains tentative information, Nichia may change the contents without notice.

Application Note

The measurement results in Figure 2 show that larger diameters of a Through Hole don't necessarily result in better heat dissipation; the optimal diameter can be read from the graph. This is probably due to the surface area of the copper plating.

In theory, the largest surface area of copper plating ensures the best heat dissipation, when the maximum value is given by the formula below:

(The sum of the inner surface areas of Through Holes) - (The sum of the lost top and bottom surface areas of Through Holes)

The value obtained from the formula is the net increase of the surface area of copper plating.

The net increase of the surface area of copper plating is defined by the following formula:

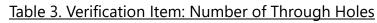
$$y = (x\pi \cdot A \cdot t) - \{(x/2)^2 \cdot A \cdot 2\}$$

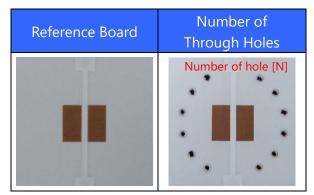
 $= -1/2A\pi \{(x-t)^2 - t^2\}$

Here, x: Diameter of a Through Hole φd (mm)

A: The number of Through Holes

T: Layer thickness of the board (mm)


y: Net increase of surface area of the copper plating (mm^2)


When the diameter of a Through Hole is equal to the layer thickness, x=t, the net increase of surface area of the copper plating, y, becomes the largest.

Jun. 9, 2021

4.2 Setting of the Number of Through Holes

We evaluated the heat dissipation by changing the number of Through Holes. (We used the same conditions in the diameter of a Through Hole and the diameter of a set of Through Holes.)

Please refer to Figure 3 for the evaluation results of the heat dissipation depending on the number of Through Holes.

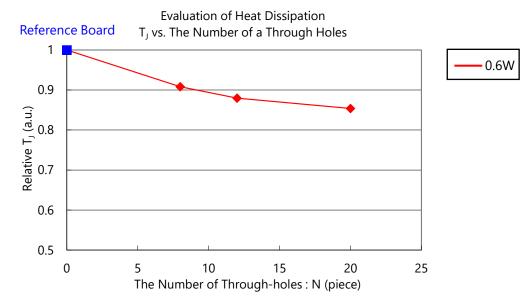
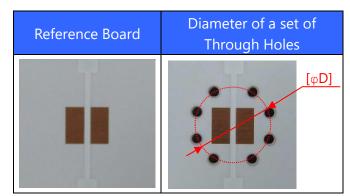


Figure 3. Evaluation Result of Heat Dissipation Depending on the Number


The measurement results in Figure 3 show that the higher the number of Through Holes, the better the heat dissipation. We confirmed, however, that too many holes don't necessarily contribute to good heat dissipation. Moreover, too many holes could affect the performance of the board and increase the processing cost.

SP-QR-C2-210611-1 Jun. 9, 2021

4.3 Setting of the Diameter of a Set of Through Holes

We evaluated the heat dissipation by changing the diameter of a set of Through Holes. (We used the same conditions in the diameter of a Through Hole and the number of Through Holes.)

Table 4 Verification Item: Diameter of a Set of Through Holes

Please refer to Figure 4 for the evaluation results of the heat dissipation depending on the diameter of a set of Through Holes.

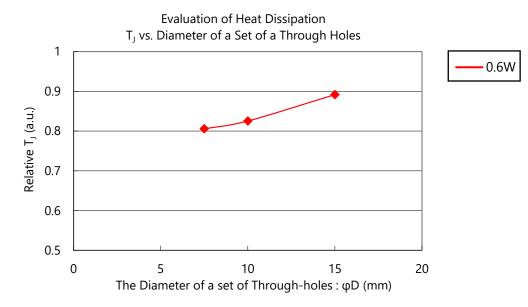


Figure 4. Evaluation Result of Heat Dissipation Depending on the Diameter of a Set of Through Holes

The measurement results in Figure 4 show that the heat can be dissipated more effectively as the Through Holes are located nearer to the LEDs, as heat sources. It is necessary to take the performance of the board and working efficiency into account to determine the optimal location of the Through Holes.

🖉 ΝΙCΗΙΛ **Application Note**

5. Conclusion

Nichia recommends that the board be designed by taking the above evaluation results into consideration.

The optimal thermal design can enable LED products to be used efficiently, leading to the quality improvement of the finished products.

Please note that the reverse side of the board can short circuit, when Through Holes are located on the copper plating with the potential energy.

Jun. 9, 2021

🖉 ΝΙCΗΙΛ **Application Note**

Disclaimer

This application note is a controlled document of Nichia Corporation (Nichia) published to provide technical information/data for reference purposes only. By using this application note, the user agrees to the following:

- This application note has been prepared solely for reference on the subject matters incorporated within it and Nichia makes no guarantee that customers will see the same results for their chosen application.
- The information/data contained herein are only typical examples of performances and/or applications for the product. Nichia does not provide any guarantees or grant any license under or immunity from any intellectual property rights or other rights held by Nichia or third parties.
- Nichia makes no representation or warranty, express or implied, as to the accuracy, completeness or usefulness of any information contained herein. In addition, Nichia shall not be liable for any damages or losses arising out of exploiting, using, or downloading or otherwise this document, or any other acts associated with this document.
- The content of this application note may be changed without any prior or subsequent notice.
- Copyrights and all other rights regarding the content of this document are reserved by Nichia or the right holders who have permitted Nichia to use the content. Without prior written consent of Nichia, republication, reproduction, and/or redistribution of the content of this document in any form or by any means, whether in whole or in part, including modifications or derivative works hereof, is strictly prohibited.

491 Oka, Kaminaka-Cho, Anan-Shi, NICHIA CORPORATION TOKUSHIMA 774-8601, JAPAN http://www.nichia.co.jp Phone: +81-884-22-2311 Fax: +81-884-21-0148

Jun. 9, 2021